Decomposable Functors and the Exponential Principle, Ii
نویسندگان
چکیده
We develop a new setting for the exponential principle in the context of multisort species, where indecomposable objects are generated intrinsically instead of being given in advance. Our approach uses the language of functors and natural transformations (composition operators), and we show that, somewhat surprisingly, a single axiom for the composition already suffices to guarantee validity of the exponential formula. We provide various illustrations of our theory, among which are applications to the enumeration of (semi-)magic squares.
منابع مشابه
Symmetric Monoidal Completions and the Exponential Principle among Labeled Combinatorial Structures
We generalize Dress and Müller’s main result in [5]. We observe that their result can be seen as a characterization of free algebras for certain monad on the category of species. This perspective allows to formulate a general exponential principle in a symmetric monoidal category. We show that for any groupoid G, the category !̂G of presheaves on the symmetric monoidal completion !G of G satisfi...
متن کاملConstructible exponential functions, motivic Fourier transform and transfer principle
We introduce spaces of exponential constructible functions in the motivic setting for which we construct direct image functors in the absolute and relative settings. This allows us to define a motivic Fourier transformation for which we get various inversion statements. We also define spaces of motivic Schwartz-Bruhat functions on which motivic Fourier transformation induces isomorphisms. Our m...
متن کاملAn EM Algorithm for Estimating the Parameters of the Generalized Exponential Distribution under Unified Hybrid Censored Data
The unified hybrid censoring is a mixture of generalized Type-I and Type-II hybrid censoring schemes. This article presents the statistical inferences on Generalized Exponential Distribution parameters when the data are obtained from the unified hybrid censoring scheme. It is observed that the maximum likelihood estimators can not be derived in closed form. The EM algorithm for computing the ma...
متن کاملDeformation of Outer Representations of Galois Group II
This paper is devoted to deformation theory of "anabelian" representations of the absolute Galois group landing in outer automorphism group of the algebraic fundamental group of a hyperbolic smooth curve defined over a number-field. In the first part of this paper, we obtained several universal deformations for Lie-algebra versions of the above representation using the Schlessinger criteria for...
متن کاملOptimal Decision-Theoretic Classification Using Non-Decomposable Performance Metrics
We provide a general theoretical analysis of expected out-of-sample utility, also referred to as decisiontheoretic classification, for non-decomposable binary classification metrics such as F-measure and Jaccard coefficient. Our key result is that the expected out-of-sample utility for many performance metrics is provably optimized by a classifier which is equivalent to a signed thresholding of...
متن کامل